Correction: Lee, J.H.; Lindenschmidt, K.-E. Bias-Corrected RADARSAT-2 Soil Moisture Dynamics Reveal Discharge Hysteresis at an Agricultural Watershed. Remote Sens. 2023, 15, 2677

نویسندگان

چکیده

There was an error in the original publication [...]

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Surface Soil Moisture Using Radarsat-2

Extremes in soil moisture, either too much or too little, present a significant risk to agricultural productivity. Managing and mitigating risk requires information and knowledge to assess risk potential, implement risk reduction strategies and deliver responses to this risk. Synthetic aperture radars (SARs) are sensitive to the dielectric properties of soils and are thus well suited to provide...

متن کامل

Radar Remote Sensing for Estimation of Surface Soil Moisture at the Watershed Scale

Introduction ___________________________________________________________________________________________________________________________ 91 Semi-Empirical Approaches _______________________________________________________________________________________ 94 ms Change Detection ________________________________________________________________________________________________________ 96 SAR Data Fus...

متن کامل

Soil moisture estimation in a semiarid watershed using 3 RADARSAT - 1 satellite imagery and genetic programming

6 [1] Soil moisture is a critical element in the hydrological cycle especially in a semiarid 7 or arid region. Point measurement to comprehend the soil moisture distribution 8 contiguously in a vast watershed is difficult because the soil moisture patterns might 9 greatly vary temporally and spatially. Space-borne radar imaging satellites have been 10 popular for they may exhibit all-weather ob...

متن کامل

A Novel Bias Correction Method for Soil Moisture and Ocean Salinity (SMOS) Soil Moisture: Retrieval Ensembles

Bias correction is a very important pre-processing step in satellite data assimilation analysis, as data assimilation itself cannot circumvent satellite biases. We introduce a retrieval algorithm-specific and spatially heterogeneous Instantaneous Field of View (IFOV) bias correction method for Soil Moisture and Ocean Salinity (SMOS) soil moisture. To the best of our knowledge, this is the first...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2023

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs15133342